
Energy distributions of 2D excitons in the presence of nonequilibrium phonons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 2163

(http://iopscience.iop.org/0953-8984/8/13/008)

Download details:

IP Address: 171.66.16.208

The article was downloaded on 13/05/2010 at 16:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 2163–2171. Printed in the UK

Energy distributions of 2D excitons in the presence of
nonequilibrium phonons

L E Golub, A V Scherbakov and A V Akimov
A F Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St Petersburg,
Russia

Received 19 October 1995, in final form 18 January 1996

Abstract. For the first time we present the results of an analysis of the energy distribution
function of 2D excitons for fixed nonequilibrium phonon spectra. The calculations are based
on the kinetic equation for the interacting 2D exciton and 3D acoustic phonon gases. For the
low-density exciton gas in GaAs/AlGaAs quantum wells (QW), we find a strong dependence of
the exciton energy distribution on the QW width and nonequilibrium phonon spectrum.

1. Introduction

In recent experiments [1] it was shown that the heating of two-dimensional exciton gas
(2DExG) by nonequilibrium phonons depends strongly on the width (d) of the quantum
well (QW) and the exciton density (ns). The experimental results evidently show that the
energy distribution of the 2DExG forns � 1010 cm−2 in the presence of nonequilibrium
phonons becomes essentially a non-Boltzmann distribution. A qualitative explanation was
given in [1], which is based on the selection rules for the exciton–phonon interaction in 2D
semiconductor structures.

The nonequilibrium energy distributionf (E) of the 3D excitons in bulk semiconductors
was calculated earlier [2] in connection with ‘hot-spot’ experiments [3]. In the present
paper we calculate the energy distributionf (E) for 2D excitons interacting with 3D non-
Planckian phonons. The quantum confinement of excitons has an effect on selection rules
for the exciton–phonon interaction and makes the analysis quite different from that in the
3D case [2]. We will separately analyse the role of LA and TA phonons taking into
account the anisotropy of the coupling matrix element for exciton scattering by phonons.
The system of low-density 2DExG differs strongly from the degenerate two-dimensional
electron gas, where due to the strong electron–electron scattering the energy distribution is
close to Fermian and a certain temperature of 2D electron gas may be introduced. Another
specific feature of excitons is their finite lifetimeτ0. In high-quality GaAs/AlGaAs QWs,
τ0 ∼ 10−9 s [4], which is much larger than the characteristic energy exciton–acoustic phonon
relaxation timeτex−ph ∼ 10−11–10−10 s [5–7]. Due to the conditionτ0 � τex−ph one can
consider the 2DExG to be in equilibrium with nonequilibrium phonons, neglect generation
and recombination processes in the kinetic equation and normalizef (E) to the given exciton
densityns . We will also neglect the exciton-exciton collisions (τex−ex � τex−ph) and assume
that the 2DExG has no effect on the nonequilibrium phonon occupation numbersNω, which
are determined by the phonon generator and the geometry of the experiment [1].
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2. Theory

Under the above assumptions the kinetic equation for the exciton energy distributionf (Ek)

is reduced to ∑
k′

[
Wk′→kf (Ek′) − Wk→k′f (Ek)

] = 0. (1)

Herek andEk are the exciton in-plane wave vector and kinetic energy (Ek = h̄2k2/2m);
the transition probability is given by

Wk→k′ = 2π

h̄

∑
q,ν

∣∣Mq,ν

k→k′
∣∣2

(
Nων(q) + 1 ± 1

2

)
δ(Ek′ − Ek ± h̄ων(q)) (2)

whereM
q,ν

k→k′ is the matrix element for thek → k′ transition with emission (+) or absorption
(−) of an acoustic phonon characterized by the polarizationν = LA , TA, the 3D wave vector
q and frequencyων(q) = sνq, wheresν is the sound velocity.

The exciton envelope function in the state with the wave vectork can be written as

9k(re, rh) = eik·R‖F(ρ) ϕe(ze) ϕh(zh) (3)

wherere, rh are the electron and hole positions,R is the position of the exciton centre of
mass,z is the growth direction,‖ indicates the vector component in the QW plane,ϕe(h)(z)

is the electron (hole) wave function for the first size-quantized level,ρ = (re − rh)‖, and
F(ρ) is a function describing the relative electron–hole motion. In the simplest variational
approach,

F(ρ) =
√

2

πa2
0

e−ρ/a0 (4)

with a0 being the 2D effective exciton radius.
In GaAs/AlGaAs QWs the following mechanisms contribute to the exciton–acoustic

phonon interaction: the deformation potential (DP) and the piezo-acoustic (PA) mechanism.
The DP interaction Hamiltonian for creation (annihilation) of one acoustic phonon of wave
vectorq and modeν can be written as

HDP
ex−ph = HDP

e−ph + HDP
h−ph =

√
h̄

2ρ0V sνq
iq

(
4ee∓iq·re + 4he∓iq·rh

)
(5)

where4e, 4h are the electron and hole deformation potential constants,ρ0 is the material
density, andV is the whole volume. The PA interaction Hamiltonian is

HPA
ex−ph = HPA

e−ph + HPA
h−ph =

√
h̄

2ρ0V sνq
β

(
e∓iq·re − e∓iq·rh

)
(6)

whereβ is the exciton average PA constant.
Note that in fact the deformation potential for holes is anisotropic:

HDP
h−ph =

(
a + b

2

) (
uxx + uyy

) + (a − b) uzz (7)

where the diagonal components of the deformation tensor are

uαα =
√

h̄

2ρ0V sνq
ie(q,ν)

α qαe∓iq·rh
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ande(q,ν) is the polarization unit vector. Therefore4h in equation (5) is a function of the
angle betweenq and the plane of the QW:

4h (q) =


a + b

2
− 3

2
b

(
qz

q

)2

for LA phonons

−3

2
b

(
qzq‖
q2

)2

for TA phonons.

(8)

Since the conduction electrons interact only with LA phonons,4e vanishes for the exciton–
TA phonon interaction.

Calculating the matrix elements

M
q,ν

k→k′ = 〈9k|Hex−ph|9k′ 〉
and substituting into equation (2) we obtain the expressions for transition probabilities:

WDP
k→k′ = 42(q)

h̄ρ0S0s2
ν

(
Nsνq + 1 ± 1

2

)
q2

qz

2
(
q − q‖

)
(9)

WPA
k→k′ = β2(q)

h̄ρ0S0s2
ν

(
Nsνq + 1 ± 1

2

)
1

qz

2
(
q − q‖

)
(10)

whereq = (h̄/2msν)|k2 − k′2|, q‖ = ∣∣k − k′∣∣, qz =
√

q2 − q2
‖ , S0 is the sample area, and

2(x) is the Heaviside step function:

2(x) =
{

1 x > 0

0 x < 0.

The effective exciton DP and PA constants are given by

4(q) = 4eZe(qz)
/[

1 +
(mh

2m
q‖a0

)2
]3/2

+ 4h(q) Zh(qz)
/[

1 +
( me

2m
q‖a0

)2
]3/2

(11)

β(q) = β

{
Ze(qz)

/[
1 +

(mh

2m
q‖a0

)2
]3/2

− Zh(qz)
/[

1 +
( me

2m
q‖a0

)2
]3/2

}
. (12)

Ze,h are the overlap integrals defined as

Ze,h(qz) =
∫ ∞

−∞
dz ϕ2

e,h(z)e
iqzz.

me, mh are the electron and hole effective masses.
In the approximation of infinitely high barriers

Ze(qz) = Zh(qz) = sin(qzd/2)

(qzd/2)
[
1 − (qzd/2π)2

] (13)

whered is the QW width. This function is equal for 1 atqz = 0 and decreases rapidly for
qz ∼ π/d. Further, for qualitative consideration we shall suppose infinitely high barriers
using equation (13) for numerical calculation off (E), and discuss the effect of finite barriers
in the next section.
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3. Results and discussion

For numerical calculations of the exciton distribution functionf (E) we used the parameters
for the heavy-hole free exciton in GaAs/AlGaAs QWs, namely,me = 0.067m0, mh =
0.15m0 (m0 is the free-electron mass),a0 = 100 Å, 4e = 7.3 eV, a = − 6.7 eV,
b = − 2 eV, sLA = 5 × 105 cm s−1, sT A = 3 × 105 cm s−1.

We calculated the exciton energy distribution only for the DP interaction since the PA
interaction is known to be important only for very low energiesE � 1 meV [7].

For calculation off (E) we have chosen the nonequilibrium phonon spectrumNω

consisting of only low-frequency phononsω < ω0, whereh̄ω0 is the high-energy cut-off
which has a value of several meV. This is typical for the experiments with nonequilibrium
phonons when the phonon generator and the region with 2DExG are separated by the semi-
insulating GaAs substrate in which effective scattering of high-frequency phonons takes
place (see [1] and references therein). The value of the cut-offω0 may be varied by
changing the material of the substrate and the distance between the phonon generator and
2DExG. In principle the arbitrary nonequilibrium phonon spectrumNω may be used for
the calculation. For example, it is known [3] that in the ‘hot-spot’ regime a deficit of low-
energy phonons exists, which is opposite to what is the case for the high-energyω0 cut-off.
In the present paper, to show the sensitivity of the 2DExG energy distributionf (E) to the
nonequilibrium features of the phonon spectrumNω, we take

Nω =
{

exp

[
h̄ω

kBT (ω)

]
− 1

}−1

(14)

whereT (ω) = 12 K for ω < ω0 and T (ω) = 4.5 K for ω > ω0 (kB is the Boltzmann
constant).

The results of the calculation show thatf (E) depends on the width of QW, the value
of ω0, phonon polarization and the angular distribution of nonequilibrium phonons.

Figure 1. The energy distributionf (E) in the presence
of LA nonequilibrium phonons with a high-frequency
cut-off (h̄ω0 = 2 meV) for the QWs with different
widths (d). The arrow showsE = h̄ω0.

Figure 2. The energy distributionf (E) for d = 25 Å
and different cut-offs (¯hω0) of the LA nonequilibrium
phonon spectrum. The arrows showE = h̄ω0.
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Figure 3. The energy distributionf (E) for d = 25 Å
and h̄ω0 = 2 meV, when interaction with only LA or
TA phonons is taken into consideration. The arrow
showsE = h̄ω0.

Figure 4. The energy distributionf (E) for anisotropic
(1) and isotropic (2) TA phonon spectra (see the text);
d = 25 Å, h̄ω0 = 2 meV. The arrow showsE = h̄ω0.

First we present results for the isotropic distribution of nonequilibrium phonons.
Figure 1 showsf (E) for different d. From comparison with the Boltzmann distribution
(the dashed line) it is clearly seen thatf (E) is nonequilibrium and decreases rapidly for
E > h̄ω0. The difference from the Boltzmann distribution becomes larger for narrow QWs
and correspondingly the decrease off (E) is more rapid whiled decreases. Figure 2 shows
f (E) for different ω0 (d = 25 Å). It is seen that whileω0 increases the rapid decrease
for f (E) starts at higherE ∼ h̄ω0. The effect of the phonon polarization (LA, TA) on
f (E) is shown in figure 3. For the parameters which were used in this calculation (see the
caption to figure 3),f (E) differs strongly for LA and TA modes. For the interaction with
TA modes,f (E) is almost of Boltzmann form, whilef (E) is essentially nonequilibrium if
only LA phonons are taken into consideration. The analysis shows that the effect of phonon
polarization onf (E) is mainly due not to the difference in the sound velocities but to the
strong anisotropy of the deformation potential for TA phonons—see equation (8).

The general feature in the establishing off (E) in the presence of nonequilibrium
phonons is the imbalance between emission and absorption of phonons withω > ω0 by
2DExG. Due to the low number of phonons withω > ω0 there are only few absorption
transitionsk → k′ for Ek′ − Ek > h̄ω0, but the emission processk′ → k may be very
effective. This qualitatively should lead to the fast decay off (E) for E > h̄ω0. Moreover
the calculations show the dependence off (E) on the width,d, of the QW. This fact reflects
the specific features of the exciton–phonon interaction in 2DExG.

The selection rules for the exciton–phonon transition give the maximum phonon
momentum and hence the maximum phonon energy, ¯hωmax, which is active in the
interaction. This energy is determined by the restrictions of theq-projections parallel,
q‖, and perpendicular,qz, to the plane of the QW. The momentum conservation which is
included in equations (9) and (10) in the form of a Heaviside step function gives restrictions
for q‖. The maximum in-plane phonon wave vector,qmax

‖ , depends onk and the type of
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the transition. For the exciton withk = 0 only an absorption process is possible and

qmax
‖ (k = 0) = 2msν/h̄.

For excitons withk > 2msν/h̄, qmax
‖ differs for emission and absorption of phonons:

qmax
‖ = 2k ± 2msν/h̄.

For the perpendicular directionqz is limited by the overlap integral (13), and the major
contribution in the exciton–phonon transitions for LA polarization is given by phonons with
qmax

z ∼ π/d. Hence

ωmax
LA ∼ sLA

√(
qmax

‖
)2 + (

qmax
z

)2
.

In GaAs the main contribution inωmax
LA is determined bysLAqmax

z . Apparently the value of
h̄sLAqmax

‖ is equal to 0.03 meV for the excitons at the bottom of the band and increases up
to 0.3 meV for Ek ∼ 1 meV. The value of ¯hsLAqmax

z is much larger and has a value of
1 meV for d = 100 Å. The fact thatqmax

‖ � qmax
z leads to the small anglesθmax

LA between
the normal to the plane of QW andq of the phonons which are absorbed or emitted by
2DExG:

tanθmax
LA = qmax

‖ /qmax
z � 1.

However, this is not true for TA phonons, when4h(q) is strongly anisotropic and4e = 0—
see equation (8). This anisotropy makes phonons with smallθ inactive in the interaction
with excitons, and the maximum probability of the transition is found for larger angles
θmax
T A > θmax

LA . As a result we have a decrease of the maximum energy and

h̄ωmax
T A < h̄sT A

√(
qmax

‖
)2 + (

qmax
z

)2
.

The restrictions inq and correspondingly in ¯hω obviously do not effectf (E) if
the phonon spectrumNω is Planckian. In that case the exciton distribution is always a
Boltzmann one. A nonequilibriumf (E) appears only ifNω is non-Planckian and the
frequency interval 0< ω < ωmax includes nonequilibrium features ofNω. For the
interaction with LA phonons in GaAs/AlGaAs QWs, ¯hωmax

LA ∼ 1 meV for d = 100 Å
and ∼4 meV for d = 25 Å. As a result, for our modelNω—see equation (14)—f (E)

should be nonequilibrium ifω0 < ωmax. Thereforef (E) is sensitive to the values ofd and
ω0, and to the phonon polarization. Ifω0 < ωmax excitons cannot be effectively ‘heated’
to the energiesE > h̄ω0. This fact is clearly seen for narrow QWs and smallω0—see
curves 1 in figure 1 and figure 2. Qualitatively, excitons withE > h̄ω0 effectively relax,
emitting phonons withω0 < ω < ωmax, and this emission process cannot be compensated
by the phonon absorption due to the deficit of phonons withω > ω0. In the case of wide
QWs or largeω0 we haveω0 > ωmax, and excitons do not feel nonequilibrium features of
Nω. Hencef (E) does not differ strongly from the Boltzmann distribution—see curves 3 on
figure 1 and figure 2. The dependence off (E) on a phonon polarization (LA, TA) comes
from the difference inωmax (ωmax

T A < ωmax
LA ). To show this we choosed andω0 so thatf (E)

differs strongly for LA and TA phonons—see figure 3, wheref (E) is almost of Boltzmann
form for TA phonons, while for LA phononsf (E) decreases rapidly forE > h̄ω0.

The effect of finite barriers modifies the dependence off (E) on d. In particular, it may
be important for narrow QWs (d � 100 Å) when the exciton wave function essentially
penetrates into the barriers. Then the rapid decrease of overlap integral starts at smallerqz

in comparison to the case of infinite barriers. Our calculations show that for Al0.33Ga0.67As
barriers and QW withd = 25 Å, qmax

z decreases by 40% while ford = 100 Å the changes
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in qmax
z are negligible in comparison with what is found for infinite barriers. So in the case

of finite barriers the well width dependence will be slightly reduced.
We analysed the case of an anisotropic phonon distribution, which is more realistic

in the experiments with nonequilibrium phonons when the phonon generator and 2DExG
are located on opposite sides of the GaAs substrate [1]. We consider nonequilibrium TA
phonons incident and specularly reflected at the surface with 2DExG in the confined cone.
To show the effect of the anisotropy of the phonon distribution we solved the kinetic equation
(1) using equation (9) with phonon occupation numbers

N(q) =
{

exp

[
h̄sT Aq

kBT (q)

]
− 1

}−1

(15)

where

T (q) =
{

12 K for sT Aq < ω0 andq‖ < qz

4.5 K otherwise.

The correspondingf (E) is shown in figure 4 (curve 1) for ¯hω0 = 2 meV andd = 25 Å. The
difference from the case of the isotropic phonon distribution (curve 2) is clearly seen. While
for the isotropic spectrumNω, f (E) does not differ strongly from the equilibrium Boltzmann
distribution, the anisotropic contribution (15) makesf (E) essentially nonequilibrium. The
important feature is that the decrease off (E) for E > h̄ω0 becomes more rapid in the case
of anisotropicN(q). The reason for this is the increasing role of the exciton transitions with
absorption of phonons incident on the plane of the QW with anglesθ < π/4 (q‖ < qz).
This fact effectively increases ¯hωmax and hence the role of high-energy phonons becomes
important in the heating of 2DExG.

We also present the results of the numerical calculation off (E) when the nonequilibrium
phonon spectrum possesses a monochromatic isotropic contribution to the equilibrium
(Planckian) background spectrum withT = 4.5 K:

Nω = P δ(h̄ω − h̄ω1) + [
exp(h̄ω/kBT ) − 1

]−1
. (16)

At the present time the monochromatic high-frequency spectrum (16) is not reliable
experimentally because of the difficulties in the generation of monochromatic high-
frequency (1011–1012 Hz) phonons. However, we expect the theoretical consideration for
monochromatic phonons to be helpful for using a 2DExG as a potential phonon spectrometer.
Figure 5 showsf (E) for h̄ω1 = 2 meV and two values ofP . It is seen thatf (E) has
resonant peaks atE = nh̄ω1 (n = 1, 2, 3). The first peak (E1 = h̄ω1) is due to the absorption
of a phonon by the 2D exciton withk = 0. Other peaks correspond to absorption processes
involving more than one phonon (see the inset in figure 5). It is seen that resonant peaks
broaden while the phonon powerP increases.

4. Conclusions

Theoretical analysis and corresponding numerical calculations show that the energy
distribution of 2D excitons in the presence of nonequilibrium phonons is a non-Boltzmann
distribution and depends both on the width of the QW and the phonon spectrum. Our
results show thatf (E) reflects the features of the nonequilibrium phonon spectrumNω, and
that 2DExG may be used for obtaining information about the spectrum of nonequilibrium
phonons.

Experimentally,f (E) may be studied in several ways. In principle, the annihilation of
excitons with simultaneous emission of optical phonons results in a luminescence spectrum
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Figure 5. The energy distributionf (E) for monochromatic phonon spectrum (16); ¯hω1 =
2 meV, d = 25 Å. 1: P = 2.25 meV; 2: P = 0.45 meV. The inset shows the exciton
transitions with absorption of a phonon of energy ¯hω1.

which allows one to measure directlyf (E) for the wide range ofE (see [3] and references
therein). Information about the high-energy tail off (E) may be also obtained by studying
the population of light-hole excitons whose energy is several meV higher than the bottom of
the heavy-hole exciton band. This method was used in [1] to study the heating of 2DExG
in wide QWs (d = 200 Å). In narrow QWs where the nonradiative processes become
important the effect of population of high-energy exciton states and correspondingly the
qualitative features of the high-energy tail off (E) may be studied from the comparison
of the exciton luminescence quenching in the presence of nonequilibrium phonons with
equilibrium data. Such a technique was used in [1] for QWs withd = 25 Å.

Our results are in agreement with the experiment [1] where the authors obtained
effective heating of the 2DExG in wide QWs (d = 200 Å) and an absence of heating
by nonequilibrium phonons in narrow QWs (d = 25 Å). In [1] the authors used qualitative
estimation of the maximum frequencyωmax ∼ πs/d of phonons which are active in the
exciton–phonon interaction. This is appropriate for LA phonons; however, care must
be taken for TA phonons when the DP constant for interaction with 2DExG is strongly
anisotropic. This makesf (E) sensitive to the polarization and angular distribution,N(q),
of nonequilibrium phonons.
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